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Conformation of a single polyelectrolyte chain in the Coulombic unscreened limit
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The dimensions of single polyelectrolyte chains of increasing length are investigated with off
lattice Monte Carlo simulations. It is found that the expansion factor of the mean square end to
end distance a% scales with uN®/2 for chain lengths N between 10 and 100 in the whole range of
the adimensional electrostatic coupling constant u. The agreement with the predictions of the mean
field theory of dilute polyelectrolyte solutions in a 6 solvent without added salt is discussed. The
scaling laws are verified by our experiments, which suggest also the scaling behavior of the “shape”

of the chains.

PACS number(s): 36.20.—r, 61.25.Hq

Solution properties of polyelectrolytes depend strongly
on the conformational behavior of the individual polymer
chains. There have been numerous theoretical studies
of the behavior of single polyelectrolyte chains in vari-
ous solvent conditions [1-11] but a quantitative under-
standing of their conformational behavior is still lack-
ing. The main reason is the additional presence of long
range repulsive Coulombic interactions to the short range
polymer-solvent interactions already present in neutral
polymers.

A number of theories have been suggested for de-
scribing the full range of behavior observed in dilute
polyelectrolyte solutions. Very recently, a self-consistent
variational mean field theory (MFT) for isolated con-
tinuous charged polymer chains originally developed by
Muthukumar [10] was extended to account for all solvent
conditions by Ha and Thirumalai [11]. They obtained an
expression for the size of the polyion chain in terms of
the parameters of the model, such as the solvent quality,
the salt concentration, and the effective charge on the
polymer.

In the infinite chain length limit, theories [1,6,10,11]
and scaling arguments [6,12] predict that the configura-
tion of a single polyelectrolyte chain in the unscreened
Coulombic interaction limit is a rigid rod. On the other
hand, a broad spectrum of configurations is expected for
finite chains, ranging from the random coil at high tem-
peratures (weakly charged chain) to more elongated con-
figurations at low temperatures (strongly charged chain)
[13]. However, the predictions of MFT have not been
compared either with real systems or with computer ex-
periments, even in the simplest case of free salt polyelec-
trolytes in a 6 solvent.

In this paper, we study the dimensions of a single poly-
electrolyte chain with unscreened Coulombic interactions
between monomers as a function of the chain length, us-
ing Monte Carlo simulations. Our aim is to try to repro-
duce on a computer the simplest polyelectrolyte system
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analyzed already with the MFT and compare the predic-
tions of both methods. Other solvent conditions and the
effect of the charge distribution on the chain properties
are planned to be reported elsewhere.

For a later comparison, we briefly review the relevant
features of the MFT about the mean dimensions of the
chains. Using a variational procedure, Muthukumar [10]
determines analytically the configuration of a single poly-
electrolyte chain as an expanded Gaussian chain with an
effective step length !, such that the mean squared end
to end distance is given by (Rlzv) = Ll;. Here L = IN
is the length of the chain, ! is the Kuhn length of the
unperturbed chain, and N is the number of statistically
independent segments. When only the electrostatic in-
teractions are present, /; is obtained as the solution of
the equation:

(L /132 — (1, /)Y? = 0.047271/2 (1)

The complete solution of Eq. (1) is given in terms of
the adimensional parameter z = (4/27)(R%)o/Q?N2
which controls the configurational statistics of the sys-
tem [13]. Here (R% )¢ refers to the uncharged state, Q is
the Bjerrum length, and N, is the total number of ele-
mentary charges on the chain. An alternative expression
is 271 = (27/4)u?f4N3, with u = Q/I the adimensional
electrostatic coupling constant and f = N./N the frac-
tion of charged monomers.

The analytical treatment gives for the extended rod-
like regime (2 < 1): (R%)Y? = 0.497Lf?/3u!/3 in
agreement with the blob model predictions [12,14], as-
suming that the configuration of the chain is that of
a linear sequence of Gaussian blobs. The numerical
coefficient is of the same order of magnitude as that
obtained by scaling arguments. Moreover, the mean
squared end to end distance is a homogeneous function
of its variables uf? and N. In fact, theory predicts that
(R%) =I*)NH(uf2N3/?), where H(z) - 1 (z — 0) and
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H(z) — 0.247z%/3 (z - o0).

In our simulations, the polyelectrolyte is modeled as an
off lattice random walk of N segments. Electric charges
are assigned to the N +1 monomers on the backbone: the
chain is fully charged (f = 1) and each monomer inter-
acts with every other monomer separated a distance r;;
through an unscreened Coulombic potential V;; = u/7;;.
Here V;; and r;; are measured in units of kgT and the
Kuhn length I, respectively (kp, Boltzmann constant and
T, temperature) [15].

Ensemble-average chain properties were determined by
Metropolis Monte Carlo sampling over the configura-
tional space of the polyelectrolyte. For each simulation at
fixed u, the initial configuration was either a random walk
or some final equilibrium configuration obtained from a
previous run at lower u. The reptation algorithm [16] was
used to generate successive chain conformations. After
approximately N2 reptation cycles, the new configura-
tion is uncorrelated with the original one. Chain con-
figurations were recorded every m times N2 cycles, the
appropriate factor m was chosen for each chain length
(see Table I), and chain properties were averaged over
the total number of sets of selected configurations.

We calculated the mean squared end to end distance
of chains with N = 10, 20, 40, 60, and 100 segments,
for several values of the adimensional coupling constant
u. We restricted our analysis to u < 1, below the value
describing the Manning condition for counterion conden-
sation (u = 1), which was absent in our simulation. The
organization of the simulation is shown in Table I. Our
results are shown in Fig. 1. The average dimensions of
chains with the same length grow as the electrostatic
interaction parameter increases, displaying a transition
between the random walk configurations (R%) = N as
u — 0 (we set I = 1 as scale length in our simulations),
to more extended configurations as u — 1. Our results
are similar to those reported by Higgs and Raphael [17]
using another simulation procedure.

In order to compare our results with the MFT pre-
dictions, we look for the relation between the simula-
tion parameters u and N at one particular state of the
system. We define a state of the system as the set of
configurations of chains of different lengths that share
the same value of the expansion factor of the mean
squared end to end distance, a% (= (R%)/(R%)0). We
select one particular expanded Gaussian state, defined as
a%(u,N) = % [13] as our testing sample. We reproduce

TABLE 1. Total number of Monte Carlo (MC) cycles, m
factors for the selection of initial and successive configurations
for statistics and total number of sets (of cycles) for averaging.
Two configurations of a set are mN? cycles apart.

Total MC Number of
N cycles Initial m  Successive m sets
10 102 500 25 5 200
20 205000 12.5 5 100
40 408 000 5 2.4 100
60 408 000 2.22 1.11 100
100 520000 2 1 50
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FIG. 1. Mean square end to end distances of the chains
(R%) as a function of the adimensional electrostatic coupling
constant, for several chain lengths.

in Fig. 2 the corresponding solutions. The best fit gives
u = (2.68 + 0.11)N~(1:52£0.02) " i, excellent agreement
with the MFT result (uN3/2 = 3.133). It is recognized
[10,11] that numerical constants are not very important
to the theory, but our results give confidence to the whole
relevant parameter z or ulN3/2.

We plot in Fig. 3 the expansion factor a% versus the
mean field scaling variable uN3/2. All the results fall
on the same curve, demonstrating the universal behavior
of our simulation performed at different chain lengths.
The MFT result is also shown in Fig. 3 for comparison.
The agreement between numerical and analytical results
is complete for uN3/2 < 2. A systematic departure of
our simulation data from above the MFT prediction is
evident for values uN3/2 > 10.

We notice that the asymptotic behavior a% —
(uN3/2)%/3 is reached by MFT only from values uN3/2 >
1000; this abscissa is reached in our simulations only for
the longest chain (N = 100) and u — 1; one wonders
if longer chains would be needed to reproduce an ideal
rodlike regime.

Actually, the configurations of our longest chains in
the high uN3/2 limit are already well elongated. In fact,
the asphericity parameter (A), introduced by Rudnick
and Gaspari [18] as a measure of the departure of fractal
objects from sphericity, has been used to investigate the
shape of the chains. (A) ranges from zero for spherically
symmetric objects to 1 for extremely elongated objects.
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FIG. 2. Roots of the equation ak(u,N) = 2 for chain

lengths N = 10, 20, 40, 60, and 100. The solid line repre-
sents the best fit, as explained in the text.
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FIG. 3. Expansion factor a% of the mean square end to
end distance versus uN*/2. All the data from simulation lie
on a single master curve. The solid line corresponds to the
mean field theory prediction (see the equation in the text).

At the maximum attainable value of u (= 0.9), the cal-
culated asphericity for chain lengths N > 40 is larger
than 0.96, while the shortest chain (N = 10) reaches
only an asphericity value of 0.73. Even if this number is
well above the random walk estimate, (A)rw = 13 [18],
it is still far from an acceptable value of an unambigu-
ously defined rod configuration. We conclude that finite
chains with lengths higher than 40 can reach the asymp-
totic rodlike regime at physically realizable values of u,
just below the threshold of Manning condensation.

Moreover, the maximum value of the abscissa of our
master curve for N = 10 is uN3/2 = 28.5. The corre-
sponding asphericities of other chains are 0.71, 0.75, and
0.72 for N = 20, 40, and 60, respectively, suggesting an
additional scaling law for the asphericity parameter with
uN3/2,

Regarding the comparison of our simulations with the
predictions of the MFT, we recall that the system we
have chosen to analyze is the simplest one to perform
this task because the corresponding MFT is exactly sol-
uble. In fact, the expansion factor is known analyti-
cally in the whole range of the scaling variable uN3/2
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[13]. Any other system—including electrostatic screen-
ing or excluded volume interactions, for instance—Iloses
that property and the details of the approach to scaling
are generally not addressed in the literature. Our simu-
lations confirm the full validity of the MFT for low values
of the scaling variable wN3/2, where the chain behaves as
an expanded Gaussian coil. The nontrivial scaling laws
predicted by the theory are only obtained for long chains
and our present numerical results give insight about the
appropriate meaning of the term “long chains” to reach
the rodlike regime. From the nature of the approxima-
tions involved in the theory, it is not expected that MFT
could give a good description of the polyelectrolyte in
the extended rod limit. Nevertheless, our Monte Carlo
calculations for the longest chains agree with the global
prediction of the theory, such as the power law expo-
nent, but demonstrate that the MFT—formulated as in
Refs. [10,11]—underestimates the dimensions of the poly-
electrolyte in the more extended configurations regime.
We state that any realistic calculation of physical proper-
ties with the MFT in this regime must take into account
this limitation of the theory.

We conclude that our Monte Carlo simulations demon-
strate the universal behavior of the expansion factor of fi-
nite polyelectrolyte chains whose monomers interact only
through pure Coulombic forces. Short chains preserve
their Gaussian behavior in the whole range of the scal-
ing variable uN3/2, whose upper limit is imposed by
the physically allowed values of the electrostatic coupling
constant u. Longer chains, even if they do not reach the
exact asymptotic behavior, show elongated (almost-rod)
structures approaching the familiar picture depicted by
high molecular weight polyelectrolytes in solutions with-
out added salt.
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